01背包题目有N种物品和一个容量为V的背包,每种物品都有1件可用。第i种物品的体积是c,价值是w。求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。思路:此方法是动规的题目,动态转移方程不难求出:f[x]:=max(f[x],f[x-w]+c);但是循环需要反向更新为什么呢,因为f[i,x]是由f[i-1,x-w]推导出来的换句话说,如果把反向改成顺序更新的话,f[i,x]就是由f[i,x-w]推知,与本题题意不符,但却是完全背包的循环方式For i:=1 to n do for x:=m downto w do 意思是不超过x公斤的背包可获得的最大价值代码如下var f:Array[1..10000]of longint;j,i,m,n,w,c,max1:longint;function max(x,y:longint):longint;beginif x>y then exit(x) else exit(y);end;beginreadln(m,n);//容量是m,有n种物品for i:=1 to n do begin readln(w,c);for j:=m downto w do f[j]:=max(f[j-w]+c,f[j]);end;max1:=0;for i:=1 to m do if f[i]>max1 then max1:=f[i];writeln(max1);End.。。。。。。。。。。。。我是分割线。。。。。。。。。。。。。。完全背包题目有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的体积是c,价值是w。求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。思路:此题目与01背包非常相似,但不同之处在于01背包每件物品只能取一次,而完全背包每件物品可取无限次。如果我们把这道题目转换成01背包的话,循环仅需变成顺向更新就行了,动态转移方程不变代码如下:var f:Array[1..10000]of longint;j,i,m,n,w,c,max1:longint;function max(x,y:longint):longint;beginif x>y then exit(x) else exit(y);end;beginreadln(m,n);//容量是m,有n种物品for i:=1 to n do begin readln(w,c);for j:=w to m do f[j]:=max(f[j-w]+c,f[j]);end;max1:=0;for i:=1 to m do if f[i]>max1 then max1:=f[i];writeln(max1);End.。。。。。。。。。。。。我是分割线。。。。。。。。。。。。。。多重背包题目有N种物品和一个容量为V的背包,每种物品都有n件可用。第i种物品的体积是c,价值是w。求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。思路:此题与完全背包十分相似,基本的方程只需将完全背包的改一下即可,因为第i种物品有n[i+1]种策略,取0件,一件,2件…n[i]件则方程为f[i,x]:=max(f[i-1,v-k*w[i]]+k*c[i],f[i,x]);程序如下:Var v,w,s,f:Array[1..1000]of longint;I,j,k,n,m:longint;function max(x,y:longint):longint;beginif x>y then exit(x) else exit(y);end;Begin Readln(m,n);For i:=1 to n do readln(v[i],w[i],s[i]);For i:=1 to n do For j:=m downto 0 do For k:=0 to s[i] do BeginIf j-k*v[i]<0 then break;//特殊情况F[j]:=max(f[j],f[j-k*v[i]]+w[i]*k);End;Writeln(f[m]);//最优解End.Ps:纯本人原创,切勿抄袭,在多重背包的思路中,由于i-1是值上一个阶段的决策,可省略,所以在代码中没有出现i-1.