第二次裁判所攻略,第二次超级机器人大战z破界篇攻略
作者:本站作者
本文目录一览
1,第二次超级机器人大战z破界篇攻略
这作SEED的人一共4个,基拉,真,阿斯兰,露娜,是25话才一起出来的,所以前期随便选路线没关系,23话结束后选择第2项就可以了前面的路线是选择跟着高达00,还是去日本(超级机器人线)还是去11区(鲁鲁修等)
2,地下城堡2黑暗觉醒副本裁判所攻略
铁骨网给大家带来的是地下城堡2黑暗觉醒,地下城堡裁判所打法攻略,一起来看一下吧~ 在地下城堡2黑暗觉醒中,地图探索是游戏的核心玩法,每个地图关卡都有着不同的副本,很多小伙伴可能会卡在地图的副本上不知道该怎么通关,不用担心,这次铁骨小编给大家带来的就是地下城堡2黑暗觉醒副本裁判所(图3)攻略啦! 副本位置 图3(41,37) 开启方法 首次:裁判所徽记蓝图位于图10右上白门旁边的头骨处(42.6)获取,首次进入需要450力量开门,开门后可以更换阵容进图 裁判所徽记(工坊制作:铁×30000、秘银×20000、强者血液×4) 推荐阵容 阵容:战士#剑圣、法师#首席法师、圣职#大主教、圣职#光辉领主(全5星职业) 装备:全队装备双铁壁符文的符文师精金甲(特效:流血免疫)、圣职#光辉领主装备尤尔魔戒(特效:眩晕免疫) 属性:全队护甲>40,血量>2800,群奶>800,单奶>700,剑圣速度>300、技巧>280 打法路线 常规路线:捡尸找钥匙-左下机关-右上狼人-左下机关-左上拿楼梯-左下机关-横墙右上端放绳-翻墙到横墙右下端-左下机关-到横墙右下端翻墙-右上点火-大门boss 永久省路法: 1.第一天,杀掉狼人获得库房钥匙后直接退出。 2.第二天及以后每天的裁判所流程变为: 转盘→(库房拿梯子→转盘→右上房间搭梯子→转盘→点火)→裁判者穆德拉。()括号内任何时候顺手宰了狼人就好。 对比原路线:转盘→狼人→转盘→库房→转盘→搭梯子→转盘→点火→裁判者穆德拉,可以每天省下大概3~5分钟赶路时间,但会失去第一天关底的奖励。 怪物战术 【普通怪物-骑士】战术:法师60%治疗队友+大火球,剑圣晕,圣骑80%嘲讽80%治疗队友60%治疗自己,大主教80%治疗队友+雷电 【普通怪物-石人】战术:法师60%治疗队友+大火球,剑圣手动晕石人,圣骑80%嘲讽80%治疗队友60%治疗自己,大主教80%治疗队友+雷电 【BOSS-兽人韦恩】战术:法师60%治疗队友+大火球,剑圣手动晕兽人,圣骑80%嘲讽80%治疗队友60%治疗自己,大主教80%治疗队友+雷电 【BOSS-裁判者穆德拉】战术:法师60%治疗队友+大火球,剑圣晕,圣骑手动嘲讽治疗自己,大主教80%治疗队友+雷电 掉落装备 红色为优秀推荐装备,值得反复刷,可用至后期
3,总决赛第二场的主裁判明明是夏春为什么吹出了闫军的风格
我以为夏春会延续上一场乔龙升老爷子的吹罚风格,但是没想到他竟然又走回了闫军的老路子。本场比赛,上半场双方的犯规数其实是差不多的,当时比赛还挺正常。可是到了最后一节包括常规时间的最后一分钟比赛却瞬间变了味道。整场比赛下来辽宁队共有27次犯规,广厦有20次,差距似乎不大。但是再来看一看罚球,广厦37次,辽宁20次。怎么样,还不明显吗?整场比赛并没有什么技术犯规违体犯规的吹罚。不过,终场前对于哈德森的两次犯规的判罚却几乎决定了某一支球队的命运,不过,广厦并没有把握住机会,辽宁队也好好顶住了压力,硬生生将比赛拖进了加时,拿下了第二场胜利。本场比赛的主教练是夏春。辽宁队的两个后卫郭艾伦和赵继伟在中场时就各自领到了第三次犯规,这对于防守强度大的他们很不利。比赛中曾经多次有一些模棱两可的球,凡是辽宁有争议的裁判都会直接不商量给广厦球权,而广厦有争议的三个教练就聚在一起了。裁判因素似乎已经成为我们无法抗拒的事情了,只能祝辽宁好运。我以为夏春会延续上一场乔龙升老爷子的吹罚风格,但是没想到他竟然又走回了闫军的老路子。本场比赛,上半场双方的犯规数其实是差不多的,当时比赛还挺正常。可是到了最后一节包括常规时间的最后一分钟比赛却瞬间变了味道。整场比赛下来辽宁队共有27次犯规,广厦有20次,差距似乎不大。但是再来看一看罚球,广厦37次,辽宁20次。怎么样,还不明显吗?整场比赛并没有什么技术犯规违体犯规的吹罚。不过,终场前对于哈德森的两次犯规的判罚却几乎决定了某一支球队的命运,不过,广厦并没有把握住机会,辽宁队也好好顶住了压力,硬生生将比赛拖进了加时,拿下了第二场胜利。本场比赛的主教练是夏春。辽宁队的两个后卫郭艾伦和赵继伟在中场时就各自领到了第三次犯规,这对于防守强度大的他们很不利。比赛中曾经多次有一些模棱两可的球,凡是辽宁有争议的裁判都会直接不商量给广厦球权,而广厦有争议的三个教练就聚在一起了。裁判因素似乎已经成为我们无法抗拒的事情了,只能祝辽宁好运。我以为夏春会延续上一场乔龙升老爷子的吹罚风格,但是没想到他竟然又走回了闫军的老路子。本场比赛,上半场双方的犯规数其实是差不多的,当时比赛还挺正常。可是到了最后一节包括常规时间的最后一分钟比赛却瞬间变了味道。整场比赛下来辽宁队共有27次犯规,广厦有20次,差距似乎不大。但是再来看一看罚球,广厦37次,辽宁20次。怎么样,还不明显吗?整场比赛并没有什么技术犯规违体犯规的吹罚。不过,终场前对于哈德森的两次犯规的判罚却几乎决定了某一支球队的命运,不过,广厦并没有把握住机会,辽宁队也好好顶住了压力,硬生生将比赛拖进了加时,拿下了第二场胜利。本场比赛的主教练是夏春。辽宁队的两个后卫郭艾伦和赵继伟在中场时就各自领到了第三次犯规,这对于防守强度大的他们很不利。比赛中曾经多次有一些模棱两可的球,凡是辽宁有争议的裁判都会直接不商量给广厦球权,而广厦有争议的三个教练就聚在一起了。裁判因素似乎已经成为我们无法抗拒的事情了,只能祝辽宁好运。
4,地下城堡2四大副本怎么打 墓穴远山幽谷裁判所打法攻略
地下城堡2.3版图1攻略;地下城堡2.3版图1怎么过; 继续出发探险,攻击过的小房间会变成红旗子,再次进入可以获得面包补给,招募雪人和佣兵,找到炼金阵,打完并且进入一次,然后直接回城(后面不再说)把能新增项都升了。最后一个怪是精英比较难打。
5,地下城堡2 裁判所为什么要带剑圣
首先,裁判所并不是一定要带剑圣的,后期随便什么职业都能吊打裁判所,有些攻略上写着要带剑圣的话,为的是剑圣技能盾击所带来的眩晕控制,毕竟对于前期来说,裁判所怪物的攻击时很高的,特别是大boss的攻击,护甲不够的话扛不住,所以需要控制一下。当然剑圣不是必须的,也可以用圣骑士、护卫代替
6,地下城堡2黑暗觉醒裁判所怎么过 黑暗觉醒裁判所通关攻略
第一次进入裁判所需要450力量才可以。这是第一个要求。另外进入后还需要450力量开一个宝箱,宝箱会给三四百左右的金币,但奖励可能是随机的,只不过个人实际体验中的都没装备,只有金币。第一次进副本的时候会有5个骷髅头。可能装备、金币、怪物,最重要的是钥匙开启左下角紫色圈圈机关,5个骷髅调查完毕,得到机关钥匙。去左下角开启第一次,左上角蓝色光圈消失,开启第二次,右上角蓝色光圈消失。
7,逆转裁判2攻略
在说到“死者清楚的写下被告人的姓名铃木”这句话的时候威慑(按“L”键)一下就可以了在证人作证是,按R或L键(记不到了),进行质问
你是第一次玩逆转吧,加油,这游戏很棒在证人作证是,按R或L键(记不到了),进行质问
你是第一次玩逆转吧,加油,这游戏很棒在第4句出示人物 须ヶ木マコ
是人物,不是证物,先按到证物界面,再按一下R
要知道,逆转裁判2比逆转裁判1多了一个人物作证的系统哦
8,地下城堡2裁判所怎么搭配阵容 裁判所通关攻略
阵容搭配战士#剑圣、法师#首席法师、圣职#大主教、圣职#光辉领主(全5星职业)装备与属性全队装备双铁壁符文的符文师精金甲(特效:流血免疫)、圣职#光辉领主装备尤尔魔戒(特效:眩晕免疫)全队护甲>40,血量>2800,群奶>800,单奶>700,剑圣速度>300、技巧>280战术【普通怪物-骑士】战术:法师60%治疗队友+大火球,剑圣晕,圣骑80%嘲讽80%治疗队友60%治疗自己,大主教80%治疗队友+雷电【普通怪物-石人】战术:法师60%治疗队友+大火球,剑圣手动晕石人,圣骑80%嘲讽80%治疗队友60%治疗自己,大主教80%治疗队友+雷电【BOSS-兽人韦恩】战术:法师60%治疗队友+大火球,剑圣手动晕兽人,圣骑80%嘲讽80%治疗队友60%治疗自己,大主教80%治疗队友+雷电【BOSS-裁判者穆德拉】战术:法师60%治疗队友+大火球,剑圣晕,圣骑手动嘲讽治疗自己,大主教80%治疗队友+雷电地下城堡2裁判所阵容搭配 地下城堡2裁判所队伍配置介绍 当游
9,二次函数详解
一般的,自变量(通常为x)和因变量(通常为y)之间存在如下关系:二次函数的解法 二次函数的通式是 y等于 a乘以x的平方 加 b乘以x 加 c 用数学等式写出来就是 y=ax+bx+c如果知道三个点 将三个点的坐标带入 也就是说三个方程解三个未知数 如题 方程一 8=ao^+bo+c 化简 8=c 也就是说c就是函数与Y轴的交点 方程二 7=a*6^2+b*6+c 化简 7=36a+6b+c 方程三 7=a*(-6)^2+b*(-6)+c化简 7=36a-6b+c 解出abc 就可以了 上边这种是老老实实的解法 对(6,7)(-6,7) 这两个坐标 可以求出一个对称轴 也就是X=0 通过对称轴公式x=-b/2a 也可以算 如果知道过x轴的两个坐标(y=0的两个坐标的值叫做这个方程的两个根)也可以用对称轴公式x=-b/2a算 或者使用韦达定理 一元二次方程ax+bx+c=0 (a≠0 且△=b-4ac≥0)中 设两个根为X1和X2 则X1+X2= -b/a X1·X2=c/a一般式 y=ax+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,4ac-b2/4a) ;顶点式 y=a(x-h)2;+k(a≠0,a、h、k为常数),顶点坐标为(h,k)对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax2;的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式 y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点A(x1,0)和 B(x2,0)的抛物线,即b2-4ac≥0] ; 由一般式变为交点式的步骤:二次函数(16张) ∵X1+x2=-b/a x1·x2=c/a ∴y=ax2;+bx+c=a(x2;+b/ax+c/a)=a[﹙x2;-(x1+x2)x+x1x2]=a(x-x1)(x-x2) 重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。牛顿插值公式(已知三点求函数解析式) y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。由此可引导出交点式的系数a=y1/(x1·x2) (y1为截距) 求根公式二次函数表达式的右边通常为二次三项式。求根公式 x是自变量,y是x的二次函数 x1,x2=[-b±(√(b2;-4ac)]/2a (即一元二次方程求根公式)(如右图) 求根的方法还有因式分解法和配方法 二次函数与X轴交点的情况 当△=b2;-4ac>0时, 函数图像与x轴有两个交点。 当△=b2;-4ac=0时,函数图像与x轴有一个交点。 当△=b2;-4ac<0时,函数图像与x轴没有交点。编辑本段如何学习二次函数 1。要理解函数的意义。 2。要记住函数的几个表达形式,注意区分。 3。一般式,顶点式,交点式,等,区分对称轴,顶点,图像等的差异性。 4。联系实际对函数图像的理解。 5。计算时,看图像时切记取值范围。编辑本段二次函数的图像 在平面直角坐标系中作出二次函数y=ax2+bx+c的图像, 可以看出,二次函数的图像是一条永无止境的抛物线。 如果所画图形准确无误,那么二次函数图像将是由一般式平移得到的。 注意:草图要有 1本身图像,旁边注明函数。 2画出对称轴,并注明直线X=什么 (X= -b/2a) 3与X轴交点坐标 (x1,y1);(x2, y2),与Y轴交点坐标 (0,c),顶点坐标(-b/2a, (4ac-bx2)/4a).抛物线的性质轴对称 1.二次函数图像是轴对称图形。对称轴为直线x = h 或者x=-b/2a 对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。 特别地,当h=0时,二次函数图像的对称轴是y轴(即直线x=0) a,b同号,对称轴在y轴左侧 b=0,对称轴是y轴 a,b异号,对称轴在y轴右侧顶点 2.二次函数图像有一个顶点P,坐标为P ( h,k ) 当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)2+k h=-b/2a k=(4ac-b2)/4a开口 3.二次项系数a决定二次函数图像的开口方向和大小。 当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。 |a|越大,则二次函数图像的开口越小。决定对称轴位置的因素 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以b/2a要大于0,所以a、b要同号 当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号 可简单记忆为同左异右,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时 (即ab< 0 ),对称轴在y轴右。 事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的 斜率k的值。可通过对二次函数求导得到。决定二次函数图像与y轴交点的因素 5.常数项c决定二次函数图像与y轴交点。 二次函数图像与y轴交于(0,C) 注意:顶点坐标为(h,k) 与y轴交于(0,C)二次函数图像与x轴交点个数 6.二次函数图像与x轴交点个数 a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。 k=0时,二次函数图像与x轴有1个交点。 a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点 _______ 当a>0时,函数在x=h处取得最小值ymix=k,在x<h范围内是减函数,在 x>h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向 上,函数的值域是y>k 当a<0时,函数在x=h处取得最大值ymax=k,在x>h范围内事增函数,在 x<h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下 ,函数的值域是y<k 当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数特殊值的形式 7.特殊值的形式 ①当x=1时 y=a+ah2+2ah+k ②当x=-1时 y=a+ah2-2ah+k ③当x=2时 y=4a+ah2+8ah+k ④当x=-2时 y=4a+ah2-8ah+k二次函数的性质 8.定义域:R 值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a, 正无穷);②[t,正无穷) 奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数 。 周期性:无 解析式: ①y=ax2+bx+c[一般式] ⑴a≠0 ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下; ⑶极值点:(-b/2a,(4ac-b2;)/4a); ⑷Δ=b2-4ac, Δ>0,图象与x轴交于两点: ([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0); Δ=0,图象与x轴交于一点: (-b/2a,0); Δ<0,图象与x轴无交点; ②y=a(x-h)2+k[顶点式] 此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b2)/4a; ③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0) 对称轴X=(X1+X2)/2 当a>0 且X≧(X1+X2)/2时,Y随X的增大而增大,当a>0且X≦(X1+X2)/2时Y随X 的增大而减小 此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连 用)。 交点式是Y=A(X-X1)(X-X2) 知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1 X2值。两图像对称 ①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称; ②y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称; ③y=ax2+bx+c与y=-a(x-h﹚2+k关于顶点对称; ④y=ax2+bx+c与y=-a(x+h﹚2-k关于原点对称。编辑本段二次函数与一元二次方程 特别地,二次函数(以下称函数)y=ax2+bx+c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax2+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。 函数与x轴交点的横坐标即为方程的根。 1.二次函数y=ax2;;;,y=a(x-h)2;;;,y=a(x-h)2;;+k,y=ax2;;+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 解析式 顶点坐标 对 称 轴 y=ax2 (0,0) x=0 y=ax2;+K (0,K) x=0 y=a(x-h)2; (h,0) x=h y=a(x-h)2;+k (h,k) x=h y=ax2;+bx+c (-b/2a,4ac-b2;/4a) x=-b/2a 当h>0时,y=a(x-h)2;;的图象可由抛物线y=ax2;;向右平行移动h个单位得到, 当h<0时,则向左平行移动|h|个单位得到。 当h>0,k>0时,将抛物线y=ax2;;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h>0,k<0时,将抛物线y=ax2;;向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2;-k的图象; 当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x+h)2;+k的图象; 当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x+h2;-k的图象;在向上或向下。向左或向右平移抛物线时,可以简记为“上加下减,左加右减”。 因此,研究抛物线 y=ax2;+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)2;+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了。这给画图象提供了方便。 2.抛物线y=ax2;+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b2;;]/4a)。 3.抛物线y=ax2;+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大。若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小。 4.抛物线y=ax2;+bx+c的图象与坐标轴的交点: (1)图象与y轴一定相交,交点坐标为(0,c); (2)当△=b&2;-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x?-x?| =√△/∣a∣(a绝对值分之根号下△)另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点的横坐标) 当△=0.图象与x轴只有一个交点; 当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。 5.抛物线y=ax2;+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a。 顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。 6.用待定系数法求二次函数的解析式 (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式: y=ax2;+bx+c(a≠0)。 (2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)2;+k(a≠0)。 (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a≠0)。 7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。中考典例 1.( 北京东城区)有一个二次函数的图象,三位学生分别说出了它的一些特点: 甲:对称轴是直线x=4; 乙:与x轴两个交点的横坐标都是整数; 丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3. 请你写出满足上述全部特点的一个二次函数解析式: . 考点:二次函数y=ax2;+bx+c的求法 评析:设所求解析式为y=a(x-x1)(x-x2),且设x1<x2,则其图象与x轴两交点分别是A(x1,0),B(x2,0),与y轴交点坐标是(0,ax1x2). 『因为交点式a(x-x1)(x-x2),又因为与y轴交点的横坐标为0,所以a(0+x1)(0+x2),也就是ax1x2 ∵抛物线对称轴是直线x=4, ∴x2-4=4 - x1即:x1+ x2=8 ① ∵S△ABC=3,∴(x2- x1)·|a x1 x2|= 6, 即:x2- x1= ② ①②两式相加减,可得:x2=4+,x1=4- ∵x1,x2是整数,ax1x2也是整数,∴ax1x2是3的约数,共可取值为:±1,±3。 当ax1x2=±1时,x2=7,x1=1,a=± 1 当ax1x2=±3时,x2=5,x1=3,a=± 1 因此,所求解析式为:y=±(x-7)(x-1)或y=±(x-5)(x-3) 即:y=x2-x+1 或y=-x2+x-1 或y=x2-x+3 或y=-x2+x-3 说明:本题中,只要填出一个解析式即可,也可用猜测验证法。例如:猜测与x轴交点为A(5,0),B(3,0)。再由题设条件求出a,看C是否整数。若是,则猜测得以验证,填上即可。 解析法二: 猜测法 假设以原点标记为O(0,0)点,抛物线与Y轴交点为C(0,c),A(x1,0), B(x2,0),则S△ABC=3,即是1/2·OC·AB=3,OC·AB=6=c·(x2-x1)(即是三角形的底乘以高等于6,而底是AB的距离,高为OC的距离,由条件乙、条件丙可知,三角形的底和高均为整数,即使A、B两点到对称轴的距离均相等且为整数,6=2*3=6*1,可知只可能有两种情况(1)AB间距离为2且高OC 为3,(2)AB间距离为6,高OC为1,便可简单解析出,当然后面需添加验证步骤。 2.( 安徽省)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43(0<x<30)。y值越大,表示接受能力越强。 (1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低? (2)第10分时,学生的接受能力是什么? (3)第几分时,学生的接受能力最强? 考点:二次函数y=ax2+bx+c的性质。 评析:将抛物线y=-0.1x2+2.6x+43变为顶点式为:y=-0.1(x-13)2;+59.9,根据抛物线的性质可知开口向下,当x<13时,y随x的增大而增大,当x>13时,y随x的增大而减小。而该函数自变量的范围为:0<x<30,所以两个范围应为0<x<13;13<x<30。将x=10代入,求函数值即可。由顶点解析式可知在第13分钟时接受能力为最强。解题过程如下: 解:(1)y=-0.1x2+2.6x+43=-0.1(x-13)2;+59.9 所以,当0<x<13时,学生的接受能力逐步增强。 当13<x<30时,学生的接受能力逐步下降。 (2)当x=10时,y=-0.1(10-13)2+59.9=59。 所以,第10分时,学生的接受能力为59。 (3)x=13时,y取得最大值, 所以,在第13分时,学生的接受能力最强。 3.( 河北省)某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题: (1)当销售单价定为每千克55元时,计算月销售量和月销售利润; (2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不必写出x的取值范围); (3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? 解:(1)当销售单价定为每千克55元时,月销售量为:500–(55–50)×10=450(千克),所以月销售利润为 :(55–40)×450=6750(元). (2)当销售单价定为每千克x元时,月销售量为:[500–(x–50)×10]千克而每千克的销售利润是:(x–40)元,所以月销售利润为: y=(x–40)[500–(x–50)×10]=(x–40)(1000–10x)=–10x^2+1400x–40000(元), ∴y与x的函数解析式为:y =–10x^2+1400x–40000. (3)要使月销售利润达到8000元,即y=8000,∴–10x2+1400x–40000=8000, 即:x2–140x+4800=0, 解得:x1=60,x2=80. 当销售单价定为每千克60元时,月销售量为:500–(60–50)×10=400(千克),月销售成本为: 40×400=16000(元); 当销售单价定为每千克80元时,月销售量为:500–(80–50)×10=200(千克),月销售单价成本为: 40×200=8000(元); 由于8000<10000<16000,而月销售成本不能超过10000元,所以销售单价应定为每千克80元. 5.2006义乌市经济继续保持平稳较快的增长态势,全市实现生产总值Y元,已知全市生产总值=全市户籍人口×全市人均生产产值,设义乌市2006年户籍人口为x(人),人均生产产值为y(元). (1)求y关于x的函数关系式; (2)2006年义乌市户籍人口为706 684人,求2006年义乌市人均生产产值(单位:元,结果精确到个位):若按2006年全年美元对人民币的平均汇率计(1美元=7.96元人民币),义乌市2006年人均生产产值是否已跨越6000美元大关? 6.(北京西城区)抛物线y=x2-2x+1的对称轴是( ) (A)直线x=1 (B)直线x=-1 (C)直线x=2 (D)直线x=-2 考点:二次函数y=ax2+bx+c的对称轴. 评析:因为抛物线y=ax2+bx+c的对称轴方程是:x=-b/2a,将已知抛物线中的a=1,b=-2代入,求得x=1,故选项A正确. 另一种方法:可将抛物线配方为y=a(x-h)2+k的形式,对称轴为x=h,已知抛物线可配方为y=(x-1)2,所以对称轴x=1,应选A. 7..某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,图中的二次函数图像(部分)刻画了了该公司年初以来累计利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系). 根据图像提供的信息,解答下列问题: (1)由已知图像上的三点坐标,求累计利润s(万元)与销售时间t(月)之间的函数表达式; (2)求截止到几月末公司累计利润可达30万元; (3)求第8个月公司所获利润是多少万元。 图像我整不来,我只能把图标说一下:横坐标是(t/月),纵坐标是(s/万元),然后图上画了3个坐标点,(1,-1.5)(2,-2)(5,2.5)。 (^2代表平方,*代表乘号) 解:(1)设函数关系试为S=at2+bt+c 因为S=at2+bt+c经过(1,-1.5)(2,-2)(5,2.5) 所以-1.5=a+b+c -2=4a+2b+c 2.5=25a+5b+c 解得a=1/2 b=-2 c=-0 所以函数关系试为S=1/2t2-2t (2)将S=30代入关系试得30 =1/2t2-2t 解得t1=10 t2=-6(舍去) (3)将t=8代入关系式得S=1/2*64-2*8=16 解析式求法 ①一般式:根据y=ax^2;+bx+c将(a,b)(c,d)(m,n)同时带入y=ax2+bx+c 可得解析式 ②顶点式:y=a(x-h)+k , h为顶点横坐标 k为顶点的纵坐标 将顶点和一个任意坐标带入顶点式后化简 可得解析式 ③交点式:y=a(x-x1)(x-x2) -x1 -x2为与x轴的交点横坐标 将x1 x2带入交点式 再带入任意一个坐标 可得交点式 化简后可得解析式1.定义:一般地,如果是常数,,那么叫做的二次函数.2.二次函数用配方法可化成:的形式,其中.3.抛物线的三要素:开口方向、对称轴、顶点.①的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.②平行于轴(或重合)的直线记作.特别地,轴记作直线.4.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.5.求抛物线的顶点、对称轴的方法(1)公式法:,∴顶点是,对称轴是直线. (2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.6.抛物线中,的作用(1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置. 当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则 .7.用待定系数法求二次函数的解析式(1)一般式:.已知图像上三点或三对、的值,通常选择一般式.(2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与轴的交点坐标、,通常选用交点式:.12.直线与抛物线的交点(1)轴与抛物线得交点为(0, ).(2)与轴平行的直线与抛物线有且只有一个交点(,).(3)抛物线与轴的交点二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点抛物线与轴相交; ②有一个交点(顶点在轴上)抛物线与轴相切; ③没有交点抛物线与轴相离.(4)平行于轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根.(5)一次函数的图像与二次函数的图像的交点,由方程组 的解的数目来确定:①方程组有两组不同的解时与有两个交点; ②方程组只有一组解时与只有一个交点;③方程组无解时与没有交点.(6)抛物线与轴两交点之间的距离:若抛物线与轴两交点为,由于、是方程的两个根,故一言难尽。http://baike.baidu.com/view/407281.htm
文章TAG:
第二次裁判所攻略 第二次超级机器人大战z破界篇攻略 第二 第二次 裁判