资讯

展开

eventhorizon,一部电影最后只剩一个黑人返回地球

作者:本站作者

本文目录一览

1,一部电影最后只剩一个黑人返回地球

《黑洞表面》是由保罗·安德森执导,劳伦斯·菲什伯恩、山姆·尼尔等主演的科幻电影。影片讲述了在经历了无数幻象折磨后,L&C号被修复了,米勒船长决定马上离开并且炸掉Event Horizon号,但此时的威尔已经不能自拔,他执意留下,并打算阻止L&C号离开。于此同时Event Horizon号也没打算放过这群人,
不明白啊 = =!

eventhorizon,一部电影最后只剩一个黑人返回地球

2,Event Horizon是什么样子的游戏我实在是看不懂

寻找失事的太空船,船员相继出现幻觉。恐怖得很让人揪心,不知道真相最痛苦。博士成了大反派,看他在椅子上坐着,镜头转了几次,就感觉他像黑暗使者。几处细节做得不错,很有科幻味。如结晶水,悬浮物。不过最后的原因没怎么看明白,不知道为啥会变坏。。劳伦斯·菲什伯恩扮演的船长,很给人安全感,一副大哥模样,最后舍身炸船。 []

eventhorizon,一部电影最后只剩一个黑人返回地球

3,求一部电影是一个好像是空间站的东西在空中失事了被人发现了

不知为何马上想到这部片《撕裂地平线》(Event Horizon)[HDTV] “新领域号"是下世纪40年代一艘太空飞船的名字,失踪七年之后,在海王星附近被发现。地面派出拯救队登上太空船,但却看不到船上有任何生物,而探测器显示的结论正相反:里面的确有生命反应。这时威尔博士才坦承,飞船设计时已有超光速的能力,所以它可以穿越时空门,在不同的时空里穿梭......这是一部集各种技术手段之大成的科幻片。
这是什么?

eventhorizon,一部电影最后只剩一个黑人返回地球

4,什么是黑洞

黑洞是什么 黑洞中隐匿着巨大的引力场,这种引力大到任何东西,甚至连光,都难逃黑洞的手掌心。黑洞不让任何其边界以内的任何事物被外界看见,这就是这种物体被称为“黑洞”的缘故。我们无法通过光的反射来观察它,只能通过受其影响的周围物体来间接了解黑洞。据猜测,黑洞是死亡恒星或爆炸气团的剩余物,是在特殊的大质量超巨星坍塌收缩时产生的。 因为黑洞是不可见的,所以有人一直置疑,黑洞是否真的存在。如果真的存在,它们到底在哪里? 黑洞的产生过程类似于中子星的产生过程;恒星的核心在自身重量的作用下迅速地收缩,发生强力爆炸。当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星球。但在黑洞情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质。任何靠近它的物体都会被它吸进去,黑洞就变得像真空吸尘器一样 为了理解黑洞的动力学和理解它们是怎样使内部的所有事物逃不出边界,我们需要讨论广义相对论。广义相对论是爱因斯坦创建的引力学说,适用于行星、恒星,也适用于黑洞。爱因斯坦在1916年提出来的这一学说,说明空间和时间是怎样因大质量物体的存在而发生畸变。简言之,广义相对论说物质弯曲了空间,而空间的弯曲又反过来影响穿越空间的物体的运动。 让我们看一看爱因斯坦的模型是怎样工作的。首先,考虑时间(空间的三维是长、宽、高)是现实世界中的第四维(虽然难于在平常的三个方向之外再画出一个方向,但我们可以尽力去想象)。其次,考虑时空是一张巨大的绷紧了的体操表演用的弹簧床的床面。 爱因斯坦的学说认为质量使时空弯曲。我们不妨在弹簧床的床面上放一块大石头来说明这一情景:石头的重量使得绷紧了的床面稍微下沉了一些,虽然弹簧床面基本上仍旧是平整的,但其中央仍稍有下凹。如果在弹簧床中央放置更多的石块,则将产生更大的效果,使床面下沉得更多。事实上,石头越多,弹簧床面弯曲得越厉害。 同样的道理,宇宙中的大质量物体会使宇宙结构发生畸变。正如10块石头比1块石头使弹簧床面弯曲得更厉害一样,质量比太阳大得多的天体比等于或小于一个太阳质量的天体使空间弯曲得厉害得多。 如果一个网球在一张绷紧了的平坦的弹簧床上滚动,它将沿直线前进。反之,如果它经过一个下凹的地方 ,则它的路径呈弧形。同理,天体穿行时空的平坦区域时继续沿直线前进,而那些穿越弯曲区域的天体将沿弯曲的轨迹前进。 现在再来看看黑洞对于其周围的时空区域的影响。设想在弹簧床面上放置一块质量非常大的石头代表密度极大的黑洞。自然,石头将大大地影响床面,不仅会使其表面弯曲下陷,还可能使床面发生断裂。类似的情形同样可以宇宙出现,若宇宙中存在黑洞,则该处的宇宙结构将被撕裂。这种时空结构的破裂叫做时空的奇异性或奇点。 现在我们来看看为什么任何东西都不能从黑洞逃逸出去。正如一个滚过弹簧床面的网球,会掉进大石头形成的深洞一样,一个经过黑洞的物体也会被其引力陷阱所捕获。而且,若要挽救运气不佳的物体需要无穷大的能量。 我们已经说过,没有任何能进入黑洞而再逃离它的东西。但科学家认为黑洞会缓慢地释放其能量。著名的英国物理学家霍金在1974年证明黑洞有一个不为零的温度,有一个比其周围环境要高一些的温度。依照物理学原理,一切比其周围温度高的物体都要释放出热量,同样黑洞也不例外。一个黑洞会持续几百万万亿年散发能量,黑洞释放能量称为:霍金辐射。黑洞散尽所有能量就会消失。 处于时间与空间之间的黑洞,使时间放慢脚步,使空间变得有弹性,同时吞进所有经过它的一切。1969年,美国物理学家约翰 阿提 惠勒将这种贪得无厌的空间命名为“黑洞”。 我们都知道因为黑洞不能反射光,所以看不见。在我们的脑海中黑洞可能是遥远而又漆黑的。但英国著名物理学家霍金认为黑洞并不如大多数人想象中那样黑。通过科学家的观测,黑洞周围存在辐射,而且很可能来自于黑洞,也就是说,黑洞可能并没有想象中那样黑。 霍金指出黑洞的放射性物质来源是一种实粒子,这些粒子在太空中成对产生,不遵从通常的物理定律。而且这些粒子发生碰撞后,有的就会消失在茫茫太空中。一般说来,可能直到这些粒子消失时,我们都未曾有机会看到它们。 霍金还指出,黑洞产生的同时,实粒子就会相应成对出现。其中一个实粒子会被吸进黑洞中,另一个则会逃逸,一束逃逸的实粒子看起来就像光子一样。对观察者而言,看到逃逸的实粒子就感觉是看到来自黑洞中的射线一样。 所以,引用霍金的话就是“黑洞并没有想象中的那样黑”,它实际上还发散出大量的光子。 根据爱因斯坦的能量与质量守恒定律。当物体失去能量时,同时也会失去质量。黑洞同样遵从能量与质量守恒定律,当黑洞失去能量时,黑洞也就不存在了。霍金预言,黑洞消失的一瞬间会产生剧烈的爆炸,释放出的能量相当于数百万颗氢弹的能量。 但你不要满怀期望地抬起头,以为会看到一场烟花表演。事实上,黑洞爆炸后,释放的能量非常大,很有可能对身体是有害的。而且,能量释放的时间也非常长,有的会超过100亿至200亿年,比我们宇宙的历史还长,而彻底散尽能量则需要数万亿年的时间 什么是黑洞? 就是在宇宙中有那么一些点,这些点的体积趋向于零而密度变得无穷大,由于具有强大的吸引力,物体只要进入离这个点一定距离的范围内,就会被这个强大的引力吸收掉,连光线也不例外。因此任何进入这个范围的物体都无法再逃出来,就是说,没有任何信号能够从这个范围内传出,因此这个范围的界限被称作视界,里面的情形人类无法看到。所以科学家给它起了个名字叫黑洞,英文就是black hole。 一颗燃烧尽了的恒星由于自身的重力而不断坍缩,最后就会形成黑洞。尽管关于黑洞的理论是正确的,但是科学家一直在寻找黑洞存在的证据。 黑洞是一个时空的黑暗区,由一些质量颇大的星体经重力塌缩后,所剩余的东西就成了黑洞。它的基本特徵是有一个封闭的视界,这视界就是黑洞的边界,一切外来的物质和辐射可以进入这视界以内,但视界内任何物质都不能从里面跑出来。我们可用一句”有入无出”来形容它。 黑洞产生之谜? 当一颗质量相当大的星体之核能耗尽(超新星爆发)后,残骸质量比太阳质量高3倍的恒星核心会演化成黑洞(若中子星有伴星,而中子星吸收足够伴星的物质,也能演化成黑洞)。在黑洞内,没有任何向外力能维持与重力平衡,因此,核心会一直塌缩下去,形成黑洞。 当物质掉进了事界,纵使以光速计算,也不能再走出来。 爱因斯坦以几何角度把黑洞解释为空间扭曲的洞,物质随空间而行,如果空间本身就是洞,是没有物质可逃出的。 黑洞分为四种: 恒星演化出来的黑洞、原始黑洞、重量级黑洞和研究中的中量级黑洞。 黑洞也有界限? 当一个黑洞形成后,所有物质都会向中心塌缩成一个非常细小的质点,称为奇点,黑洞的表面层称为「事件穹界」。 而这表面层和中心奇点的距离就是史瓦半径。任何物质要从黑洞的史瓦半径跑到外面去,它的逃离速度便要大於光速。 但根据狭义相对论,光速是速度的极限,因此,一切物质到了事件穹界便扯向中心的奇点,永不能逃出来。 黑洞是看不见的吗? 黑洞是个因为重力太强以致连速度最快的光也无法脱离的天体。黑洞周围的时空也受到重力的影响而扭曲,产生了一个"事地平面",任何物质只要被它吞噬就再也逃脱不出这范围,它的半径称为"重力半径"。由於连光也无法脱离,所以无法看到事象平面之内侧。 黑洞之发现? 於1990年4月27日,哈勃太空望远镜 Hubble Space Telescope的启用,为人类探索太空揭开了新的一页,虽然在制造时出了错误,使影像大打折扣,可是仍对天文学有莫大的贡献。 近来,人类对一直只是存在於理论范畴内的黑洞,已透过哈勃太空望远镜,有了进一步的证据。於仙女座大星系M31附近的M32发现了一个质量大於太阳三百万倍的黑洞。M32是在我们的银河系附近,距离地球2.3百万光年的星系。它是人类所知密度最高的星系,於直径只有一千光年的范围内(我们的银行河系直径约十万光年),包含了四百万颗星,中心和密度是我们的银河系100个一百万倍左右。假设你生活於M32中心的行星上,你会见到一个密布星光的夜光,光度比一百倍满月还要亮。科学家是由星星於该星系的活动,及其中心密度而推测的。此星系内之星星移动速度较其它一般星系每秒快了100公里。 早在18世纪末,P.S.M.拉普拉斯根据牛顿引力理论就曾预言,只要天体质量足够大,其引力就有可能强到连自身发出的光都无法逃逸到远处的程度,以致成为看不见的天体。现在,称这类天体为黑洞。显然,由于黑洞的引力极强,只有用广义相对论才能确切地描述。 黑洞具有封闭的边界,光线和其他任何物质都不能越过这个边界跳到外面。这个边界就是黑洞的视界。根据广义相对论,在球对称的引力坍缩过程中,只要坍缩核的质量足够大,就一定坍缩为黑洞。而一旦形成黑洞,就会一直坍缩到奇点。 20世纪60年代以来,彭罗塞等人引入了整体微分几何的方法,在理论上大大推进了有关黑洞和引力坍缩的研究。60年代末,彭罗塞提出了“宇宙信息检查假设”,认为奇点只能出现在黑洞之内,或者说,引力坍缩不可能形成裸奇点,黑洞外面的人看不见。这个猜想虽然有充分的根据,然而,至今并没有得到严格的证明。 超新星爆发后,如质量超过2.4太阳质量,则平衡状态不再存在,星体将无限制地收缩,星体的半径愈来愈小,密度愈来愈大,最后成为一个体积无限小而密度无穷大的奇点,从人们的视线中消失。围绕着这个奇点的是一个“无法返回”的区域,这个区域的边界称为“视野”或“事件地平”,区域的半径叫做“史瓦西半径”。任何进入这个区域的物质,包括光线,都无法摆脱这个奇点的巨大引力而逃逸,它们就像掉进了一个无底深渊,就象一个漆黑的无底洞,因而称为“黑洞”。当黑洞靠近一个天体时,它会吸走这个天体的部分物质。被吸引的物质呈螺旋状旋转,原子微粒会从黑洞的边缘沿螺旋线坠向中心,速度会越来越快,直至达到每秒九百多公里。当物体被黑洞吞没时,会因为互相碰撞而使温度上升到几百万度,并发出χ射线和γ射线。在宇宙中,只有黑洞能使物体在密集的轨道上加速到如此高的速度;也只有黑洞才会以这种方式发射χ射线和γ射线。被天文学家检测到就能够勾画出引力场图形,发现黑洞。1996年,天文学家们发现银河系中心一个巨大黑洞,它以每秒200千米速度绕银河系中心运动,离中心越近,其速度越快,其中心的射电源能量非常大,而体积却非常之小。 为了理解黑洞是如何形成的,我们首先需要理解一个恒星的生命周期。当恒星进入老年,耗尽了燃料,它开始变冷并开始收缩。1928年,一位印度研究生——萨拉玛尼安.钱德拉塞卡——乘船来英国剑桥跟英国天文学家阿瑟.爱丁顿爵士(一位广义相对论家)学习。在他从印度来英的旅途中,算出在耗尽所有燃料之后,多大的恒星可以继续对抗自己的引力而维持自己。这个思想是说:当恒星变小时,物质粒子靠得非常近,而按照泡利不相容原理,它们必须有非常不同的速度,使它们互相散开。达到平衡而保持其半径不变,正如在它的生命的早期引力被热所平衡一样。而粒子的最大速度被相对论限制为光速。这意味着,恒星变得足够紧致之时,由不相容原理引起排斥力就会比引力的作用小。强德拉塞卡算出,大约为太阳质量1.44 倍的恒星不支持自身以抵抗自己的引力。(这质量现在称为强德拉塞卡极限。)苏联科学家列夫.达维多维奇.兰道几乎在同时也得到了类似的发现。兰道指出,对于恒星还存在另一可能的终态。其极限质量大约也为太阳质量的一倍或二倍,但是其体积甚至比白矮星还小得多。这些恒星是由中子和质子之间,而不是电子之间的不相容原理排斥力所支持。所以它们被叫做中子星。然而使之超过极限将会发生什么?它会坍缩到无限密度吗?爱丁顿为此感到震惊,他拒绝相信强德拉塞卡的结果。爱丁顿认为,一颗恒星不可能坍缩成一点。这是大多数科学家的观点:爱因斯坦自己写了一篇论文,宣布恒星的体积不会收缩为零。爱丁顿的敌意使强德拉塞卡抛弃了这方面的工作,转去研究诸如恒星团运动等其他天文学问题。然而,他获得1983年诺贝尔奖。根据广义相对论,太阳质量1.44 倍的恒星的恒星会发生什么情况呢?这个问题被一位年轻的美国人罗伯特.奥本海默于1939年首次解决。然而,他所获得的结果表明,用当时的望远镜去观察不会再有任何结果。以后,因第二次世界大战的干扰,奥本海默本人非常密切地卷入到原子弹计划中去。但在本世纪60年代,现代技术的应用使得天文观测范围和数量大大增加,重新激起人们的兴趣。奥本海默得到的图景是:恒星的引力场改变了光线的路径,使之和原先没有恒星情况下的路径不一样。光锥是表示光线从其顶端发出后在空间——时间里传播的轨道。光锥在恒星表面附近稍微向内偏折,在日食时观察远处恒星发出的光线,可以看到这种偏折现象。当该恒星收缩时,其表面的引力场变得很强,光线向内偏折得更多,从而使得光线从恒星逃逸变得更为困难。对于在远处的观察者而言,光线变得更黯淡更红。最后,当这恒星收缩到某一临界半径时,表面的引力场变得如此之强,使得光锥向内偏折得这么多,以至于光线再也逃逸不出去。根据相对论,没有东西会走得比光还快。这样,如果光都逃逸不出来,其他东西更不可能逃逸,都会被引力拉回去。也就是说,存在一个事件的集合或空间——时间区域,光或任何东西都不可能从该区域逃逸而到达远处的观察者。现在我们将这区域称作黑洞,将其边界称作事件视界,它和刚好不能从黑洞逃逸的光线的轨迹相重合。 1971年约翰.阿奇贝尔德.威勒(John Archibald Wheeler)命名这样的事物为“黑洞”,因为光无法从中逃逸。基于许多证据,天文学家有许多他们认为可能是黑洞的候选天体(其证据是:它们的巨大质量可以从其对其他物体的相互作用中得到;并且有时它们会发出X射线,这被认为是正在坠入其中的物质发出的)。 广义相对论预言,运动的重物会导致引力波的辐射,那 伊斯雷尔的结果只处理了由非旋转物体形成的黑洞。1963年,新西兰人罗伊.克尔找到了广义相对论方程的描述旋转黑洞的一簇解。这些“克尔”黑洞以恒常速度旋转,其大小与形状只依赖于它们的质量和旋转的速度。如果旋转为零,黑洞就是完美的球形,这解就和上一样。如果有旋转,黑洞的赤道附近就鼓去(正如太阳由于旋转而鼓出去一样),而旋转得越快则越多。由此人们猜测,如将伊斯雷尔的结果推广到包括旋转体的情形,则任何旋转物体坍缩形成黑洞后,将最后终结于由克尔解描述的一个静态。在引力坍缩之后,一个黑洞必须最终演变成一种能够旋转、但是不能搏动的态。并且它的大小和形状,只决定于它的质量和旋转速度,而与坍缩成为黑洞的原先物体的性质无关。此结果以这样的一句谚语表达而成为众所周知:“黑洞没有毛。”“无毛”定理具有巨大的实际重要性,因为它极大地限制了黑洞的可能类型。 黑洞是科学史上极为罕见的情形之一,在没有任何观测到的证据证明其理论是正确的情形下,作为数学的模型被发展到非常详尽的地步。的确,这经常是反对黑洞的主要论据:你怎么能相信一个其依据只是基于令人怀疑的广义相对论的计算的对象呢?天文学家观测了有些双星系统,其中只有一颗可见的恒星绕着另一颗看不见的伴星运动的系统。人们当然不能立即得出结论说,这伴星即为黑洞——它可能仅仅是一颗太暗以至于看不见的恒星而已。然而,一个叫做天鹅X-1的,也刚好是一个强的X射线源。这现象的最好解释是,物质从可见星的表面被吹起来,当它落向不可见的伴星之时,发展成螺旋状的轨道(这和水从浴缸流出很相似),并且变得非常热而发出X射线。为了使这机制起作用,不可见物体必须非常小,像白矮星、中子星或黑洞那样。从观察那颗可见星的轨道,人们可推算出不可见物体的最小的可能质量。在天鹅X-1的情形,不可见星大约是太阳质量的6倍。按照强德拉塞卡的结果,它的质量太大了,既不可能是白矮星,也不可能是中子星,所以看为它只能是一个黑洞。 现在,在我们的星系中和邻近两个名叫麦哲伦星云的星系中,还有几个类似天鹅X-1的黑洞的证据。然而,几乎可以肯定,黑洞的数量比这多得太多了!在宇宙的漫长历史中,很多恒星应该已经烧尽了它们的核燃料并坍缩了。黑洞的数目甚至比可见恒星的数目要大得相当多。单就我们的星系中,大约总共有1千亿颗可见恒星。这样巨大数量的黑洞的额外引力就能解释为何目前我们星系具有如此的转动速率,单是可见恒星的质量是不足够的。我们还有某些证据说明,在我们星系的中心有大得多的黑洞,其质量大约是太阳的10万倍。星系中的恒星若十分靠近这个黑洞时,作用在它的近端和远端上的引力之差或潮汐力会将其撕开,它们的遗骸以及其他恒星所抛出的气体将落到黑洞上去。正如同在天鹅X-1情形那样,气体将以螺旋形轨道向里运动并被加热,虽然不如天鹅X-1那种程度会热到发出X射线,但是它可以用来说明在星系中心观测到的非常紧致的射电和红外线源。 人们认为,在类星体的中心是类似的、但质量更大的黑洞,其质量大约为太阳的1亿倍。落入此超重的黑洞的物质能提供仅有的足够强大的能源,用以解释这些物体释放出的巨大能量。当物质旋入黑洞,它将使黑洞往同一方向旋转,使黑洞产生一类似地球上的一个磁场。落入的物质会在黑洞附近产生能量非常高的粒子。该磁场是如此之强,以至于将这些粒子聚焦成沿着黑洞旋转轴,也即它的北极和南极方向往外喷射的射流。在许多星系和类星体中确实观察到这类射流。 人们还可以考虑存在质量比太阳小很多的黑洞的可能性。因为它们的质量比强德拉塞卡极限低,所以不能由引力坍缩产生:这样小质量的恒星,甚至在耗尽了自己的核燃料之后,还能支持自己对抗引力。只有当物质由非常巨大的压力压缩成极端紧密的状态时,这小质量的黑洞才得以形成。一个巨大的氢弹可提供这样的条件。更现实的可能性是,在极早期的宇宙的高温和高压条件下会产生这样小质量的黑洞。导致形成恒星和星系的无规性是否导致形成相当数目的“太初”黑洞,这要依赖于早期宇宙的条件的细节。所以如果我们能够确定现在有多少太初黑洞,我们就能对宇宙的极早期阶段了解很多。 如果从事件视界(亦即黑洞边界)来的光线永远不可能互相靠近,则事件视界的面积可以保持不变或者随时间增大,但它永远不会减小。事实上,只要物质或辐射落到黑洞中去,这面积就会增大;或者如果两个黑洞碰撞并合并成一个单独的黑洞,这最后的黑洞的事件视界面积就会大于或等于原先黑洞的事件视界面积的总和。事件视界面积的非减性质给黑洞的可能行为加上了重要的限制。 一黑洞附近,存在一种非常容易的方法违反第二定律:只要 将一些具有大量熵的物体,譬如一盒气体扔进黑洞里。黑洞外物体的总熵就会减少。当然,人们仍然可以说包括黑洞里的熵的总熵没有降低——但是由于没有办法看到黑洞里面,我们不能知道里面物体的熵为多少。黑洞面积定理的发现(即只要物体落入黑洞,它的事件视界面积就会增加),普林斯顿一位名叫雅可布.柏肯斯坦的研究生提出,事件视界的面积即是黑洞熵的量度。由于携带熵的物质落到黑洞中去,它的事件视界的面积就会增加,这样黑洞外物质的熵和事件视界面积的和永远不会降低。 如果一个黑洞具有熵,那它也应该有温度。但具有特定温度的物体必须以一定的速率发出辐射。为了不违反热力学第二定律这辐射是必须的。所以黑洞必须发出辐射。按照量子力学不确定性原理,旋转黑洞应产生并辐射粒子。这辐射的粒子谱刚好是一个热体辐射的谱,而且黑洞以刚好防止第二定律被违反的准确速率发射粒子和辐射,其温度只依赖于黑洞的质量——质量越大则温度越低。 我们知道,任何东西都不能从黑洞的事件视界内逃逸出来,何以黑洞会发射粒子呢?量子理论给我们的回答是,粒子不是从黑洞里面出来的,而是从紧靠黑洞的事件的外面的“空”的空间来的!我们可以用以下的方法去理解它:我们以为是”真空”的空间不能是完全空的,因为那就会意味着诸如引力场和电磁场的所有场都必须刚好是零。然而场的数值和它的时间变化率如同不确定性原理所表明的粒子位置和速度那样,对一个量知道得越准确,则对另一个量知道得越不准确。所以在空的空间里场不可能严格地被固定为零,因为那样它就既有准确的值(零)又有准确的变化率(也是零)。场的值必须有一定的最小不准确量或量子起伏。人们可以将这些起伏理解为光或引力的粒子对,它们在某一时刻同时出现、互相离开、然后又互相靠近而且互相湮灭。这些粒子加速器直接探测到。然而,可以测量出它们的间接效应。例如,测出绕着原子运动的电子能量发生的微小变化和理论预言是如此相一致,以至于达到了令人惊讶的地步。不确定性原理还预言了类似的虚的物质粒子对的存在,例如电子对和夸克对。然而在这种情形下,粒子对的一个成员为粒子而另一成员为反粒子(光和引力的反粒子正是和粒子相同)。 因为能量不能无中生有,所以粒子反粒子对中的一具参与者有正的能量,而另一个有负的能量。由于在正常情况下实粒子总是具有正能量,所以具有负能量的那一个粒子注定是短命的虚粒子。它必须找到它的伴侣并与之相湮灭。然而,一颗接近大质量物体的实粒子比它远离此物体时能量更小,因为要花费能量抵抗物体的引力吸引才能将其推到远处。正常情况下,这粒子的能量仍然是正的。但是黑洞里的引力是如此之强,甚至在那儿一个实粒子的能量都会是负的。所以,如果存在黑洞,带有负能量的虚粒子落到黑洞里变成实粒子或实反粒子的可能的。这种情形下,它不再需要和它的伴侣相湮灭了,它被抛弃的伴侣也可以落到黑洞中去。具有正能量的它也可以作为实粒子或实反粒子从黑洞的邻近逃走。对于一个远处的观察者而言,这看起来就像粒子是从黑洞发射出来一样。黑洞越小,负能粒子在变成实粒子之前必须走的距离越短,这样黑洞发射率和表观温度也就越大。辐射出去的正能量会被落入黑洞的负能粒子流所平衡。按照爱因斯坦方程E=mc2(E是能量,m是质量,c为光速),能量和失质量时,它的事件视界面积变小,但是它发射出的辐射的熵过量地补偿了黑洞的熵的减少,所以 第二定律从未被违反过。 还有,黑洞的质量越小,则其温度越高。这样当黑洞损失质量时,它的温度和发射率增加,因而它的质量损失得更快。人们并不很清楚,当黑洞的质量最后变得极小时会发生什么。但最合理的猜想是,最终将会在一具巨大的、相当于几百万颗氢弹爆炸的发射爆中消失殆尽。一个具有几倍太阳质量的黑洞只具有千万分之一度的绝对温度。这比充满宇宙的微波辐射的温度(大约2.7K)要低得多,所以这种黑洞的辐射比它吸收的还要少。如果宇宙注定继续永远膨胀下去,微波辐射的温度就会最终减小到比这黑洞的温度还低,它就开始损失质量。但是即使那时候,它的温度是如此之低,以至于要用100亿亿亿亿亿亿亿亿年(1后面跟66个O)才全部蒸发完。这比宇宙的年龄长得多了,宇宙的年龄大约只有100到200亿年(1或2后面跟10个0)。另一方面在宇宙的极早期阶段存在由于无规性引起的坍缩而形成的质量极小的太初黑洞。这样的小黑洞会有高得多的温度,并以大得多的速率发生辐射。具有10亿吨初始质量的太初黑洞的寿命大体和宇宙的年龄相同。初始质量比这小的太初黑洞应该已蒸发完毕,但那些比这稍大的黑洞仍在辐射出X射线以及伽玛射线。这些X 射线和伽玛射线像是光波,只是波长短得多。这样的黑洞几乎不配这黑的绰号:它们实际上是白热的,正以大约1万兆瓦的功率发射能量。现在我们称它为白洞。 由于太初黑洞非常稀罕,则不太可能存在一个近到我们可以将其当作一个单独的伽玛射线源来观察。但是由于引力会将太初黑洞往任何物质处拉近,所以在星系里面和附近它们应该会更稠密得多。虽然伽玛射线背景告诉我们,平均每立方光年不可能有多于300个太初黑洞,但它并没有告诉我们,太初黑洞在我们星系中的密度。譬如讲,如果它们的密度高100万倍,则离开我们最近的黑洞可能大约在10亿公里远,或者大约是已知的最远的行星——冥王星那么远。在这个距离上复查探测黑洞恒定的辐射,即使其功率为1万兆瓦,仍是非常困难的。人们必须在合理的时间间隔里,譬如一星期,从同方向检测到几个伽玛射线量子,以便观测到一个太初黑洞。否则,它们仅可能是背景的一部份。因为伽玛射线有非常高的频率,从普郎克量子大批量原理得知,每一伽玛射线量子具有非常高的能量,这样甚至发射一万兆瓦都不需要许多量子。而要观测到从冥王星这么远来的如此少的粒子,需要一个比任何迄今已造成的更大的伽玛射线探测器。况且,由于伽玛射线不以穿透大气层,此探测器必须放到处空间。 附:蛀洞 蛀洞作为一种新的概念,提出已经有70多年了。当爱因斯但提出广义相对论之后不久,物理学家就开始对 蛀洞发生兴趣。大尺度蛀洞是爱因斯但广义相对论场方程的一个解,它标志着一种空间和时间的几何结构

5,90年代美国科幻恐怖电影

异煞 Event Horizon 1997导演: 保罗·安迪生 主演: 劳伦斯·菲什伯恩萨姆·尼尔凯瑟琳·昆兰乔里·理查森理查德·T·琼斯杰克·诺斯沃西杰森·伊莎克斯西恩·帕特维皮特·马林克Holley Chant 制片国家/地区: 英国 类型: 恐怖科幻惊险 语言: 英语 片长: 95分钟 版本: DVD版 上映日期: 1997-08-15 加拿大 “新领域号"是下世纪40年代一艘太空飞船的名字,失踪七年之后,在海王星附近被发现。地面派出拯救队登上太空船,但却看不到船上有任何生物,而探测器显示的结论正相反:里面的确有生命反应。这时威尔博士才坦承,飞船设计时已有超光速的能力,所以它可以穿越时空门,在不同的时空里穿梭...... 应该是这个,我看过一次,不过感觉有些部分太恶心了就删了...

6,求洛天依事件视界的歌词

【洛天依】Event Horizon 事件视界【H.K.君】词/曲:H.K君 双手 悬空着看似触碰着你可是我知道 那只是朋友(电子)相互斥力你说坚强(强力)维持着你的存在 是你唯一的意义而我的软弱(弱力)让你熟悉的一切 分崩离析日常(空间) 不再固定 彼此的距离 随着加速而跃迁岁月(时间)流逝变缓 超越了光速 逃离维度的极限 就这样来到已知这世界(宇宙)的终点就这样坠入黑洞周边视界线最后的一个 普朗克时间 被延长至无限只在这一刻 看着你的侧脸一直到永远 薛定谔说永远都猜不透你的心 阴天或放晴你回答的瞬间 已坍缩成谎言 music~就这样沉默 无法倾诉 的思念还没有勇气 让你留在 我身边假装着微笑 目送着你 离开我的世界只能这样 现在我只能这样...想象着来到 已知这世界(宇宙)的终点想象着坠入 黑洞周边 视界线最后的一个 普朗克时间被延长至无限只在这一刻 假装在你身边一直到永远
没看懂什么意思?

7,好看的电影像 时间裂缝深空失忆 类似的太空科幻电影有哪些看谁

1、超级外星历险 Supernova (2000)2、索拉里斯 Solaris (2002)3、太空运输 Cargo (2009)4、星河叛变 Space Truckers (1996)5、黑洞表面 Event Horizon (1997)6、时空罪恶 Los cronocrímenes (2007)7、异形终结 Screamers (1995)8、移魂都市 Dark City (1998)9、异次元骇客 The Thirteenth Floor (1999)10、天袭 The Arrival (1996)1~5是太空电影,6之后是同类型电影。
异星觉醒 Life (2017)异形:契约 Alien: Covenant (2017)迷失太空 Stranded (2013)普罗米修斯 Prometheus (2012)阿波罗18号 Apollo 18 (2011)死亡空间:余波 Dead Space: Aftermath (2011)死亡空间:坍塌 Dead Space: Downfall (2008)冲出宁静号 Serenity (2005)星际嗜血族 Bloodsuckers (2005)火星幽灵 Ghosts of Mars (2001)星际传奇 Pitch Black (2000)红色星球 Red Planet (2000)
天煞地球保卫战
天煞 第三类接触 深渊 这几部都很经典。。。。。。
月球 moon (2009) 冲出宁静号 serenity (2005) 星际传奇2 the chronicles of riddick (2004) 杰森在太空 jason x (2001)火星幽灵 ghosts of mars (2001) 火星任务 mission to mars (2000) 星际传奇 pitch black (2000) 星舰杀手 alien cargo (1999)兵人 soldier (1998) 黑洞表面 event horizon (1997)星河叛变 space truckers (1996) 第五惑星 enemy mine (1985) 宇宙静悄悄 silent running (1972)
文章TAG:eventhorizon  一部电影最后只剩一个黑人返回地球  一部  一部电影  电影  
相关教程
猜你喜欢